Functionalization in flexible porous solids: effects on the pore opening and the host-guest interactions.
نویسندگان
چکیده
The synthesis on the gram scale and characterization of a series of flexible functionalized iron terephthalate MIL-53(Fe) type solids are reported. Chemical groups of various polarities, hydrophilicities, and acidities (-Cl, -Br, -CF(3), -CH(3), -NH(2), -OH, -CO(2)H) were introduced through the aromatic linker, to systematically modify the pore surface. X-ray powder diffraction (XRPD), molecular simulations, thermogravimetric analyses, and in situ IR and (57)Fe Mössbauer spectrometries indicate some similarities with the pristine MIL-53(Fe) solid, with the adoption of the narrow pore form for all solids in both the hydrated and dry forms. Combined XRPD and computational structure determinations allow concluding that the geometry of the pore opening is predominantly correlated with the intraframework interactions rather than the steric hindrance of the substituent. Only (MIL-53(Fe)-(CF(3))(2)) exhibits a nitrogen accessible porosity (S(BET) approximately 100 m(2) g(-1)). The adsorption of some liquids leads to pore openings showing some very specific behaviors depending on the guest-MIL-53(Fe) framework interactions, which can be related to the energy difference between the narrow and large pore forms evaluated by molecular simulation.
منابع مشابه
Adsorption induced transitions in soft porous crystals: an osmotic potential approach to multistability and intermediate structures.
Soft porous crystals are flexible metal-organic frameworks that respond to physical stimuli (temperature, pressure, and gas adsorption) by large changes in their structure and unit cell volume. We propose here a thermodynamic treatment, based on the osmotic ensemble, of the interplay between guest adsorption and host deformation, where the bare host material can undergo elastic deformation, as ...
متن کاملPhotoluminescent Metal–Organic Frameworks for Gas Sensing
Luminescence of porous coordination polymers (PCPs) or metal-organic frameworks (MOFs) is sensitive to the type and concentration of chemical species in the surrounding environment, because these materials combine the advantages of the highly regular porous structures and various luminescence mechanisms, as well as diversified host-guest interactions. In the past few years, luminescent MOFs hav...
متن کاملCollaborative interactions to enhance gas binding energy in porous metal–organic frameworks
Metal-organic frameworks (MOFs) are potentially useful materials for hydrogen and methane storage. However, the weak interactions between the MOF host and gas guest molecules have limited their storage capacities at elevated temperatures. In this issue, Alkordi et al. [IUCrJ (2017), 4, 131-135] illustrate an example of a porous MOF with a suitable pore size and unique pore surface for enhanced ...
متن کاملFluorescence Microscopy Studies of Porous Silica Materials
In this article, we discuss how fluorescence microscopy techniques are used to investigate important characteristics of porous silica materials. We start with a discussion of the synthesis, formation mechanism and functionalization of these materials. We then give an introduction to single molecule microscopy and show how this technique can be used to gain deeper insights into some defining pro...
متن کاملCoordination pillared-layer type compounds having pore surface functionalization by anionic sulfonate groups.
Pillared-layer type 3D porous coordination polymers with 2-sulfonylterephthalate, 4,4'-bipyridine and Zn(2+) have metal-free sulfonate groups on the pore walls, providing Lewis basic property for acid guest sorption.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 132 3 شماره
صفحات -
تاریخ انتشار 2010